

SAFETYscan[™] In Vitro Pharmacological Profiling Services

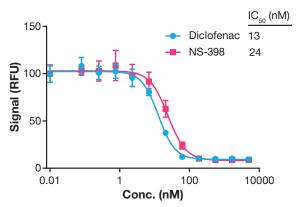
Functional Data for Improved Off-Target Liability Testing

Designed for lead optimization and safety profiling, DiscoverX's SAFETYscan in vitro pharmacological profiling services improve off-target liability testing. We offer functional assays with human targets for safety screening, improving upon traditional rodent-based binding assays. Our Safety47™ panel includes the targets recommended by major pharmaceutical companies for safety profiling¹. Assessing the specificity of lead compounds early in development using highly relevant and predictive assays allows more informed decisions about compound safety, ultimately leading to the development of safer and more effective drugs.

SAFETYscan In Vitro Pharmacological Profiling Services Highlights:

- Save resources by identifying potential adverse events before expensive animal studies or clinical trials
- Reach actionable data faster by reducing false positives with functional readouts
- Improve data quality with mechanism of action data from antagonist and agonist modes

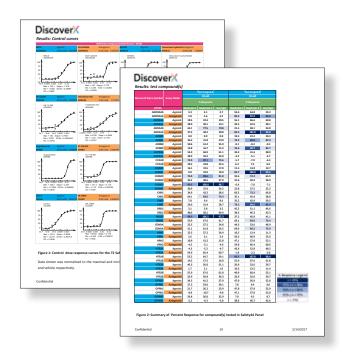

Family	Gene Symbol	Target	Readout
GPCR			
Adenosine	ADORA2A	ADORA2A	Calcium
Adrenergic	ADRA1A	ADRA1A	Calcium
	ADRA2A	ADRA2A	cAMP
	ADRB1	ADRB1	cAMP
	ADRB2	ADRB2	cAMP
Cannabinoid	CNR1	CB1	cAMP
	CNR2	CB2	cAMP
Cholecystokinin	CCKAR	CCK1	Calcium
Dopamine	DRD1	D1	cAMP
	DRD2S	D2S	cAMP
Endothelin	EDNRA	ETA	Calcium
I Patawala a	HRH1	H1	Calcium
Histamine	HRH2	H2	cAMP
Muscarinic	CHRM1	M1	Calcium
	CHRM2	M2	cAMP
	CHRM3	МЗ	Calcium
Opioid and Opioid-Like	OPRD1	OPRD1	cAMP
	OPRK1	OPRK1	cAMP
	OPRM1	OPRM1	cAMP
Serotonin	HTR1A	5HT1A	cAMP
	HTR1B	5HT1B	cAMP
	HTR2A	5HT2A	Calcium
	HTR2B	5HT2B	Calcium
Vasopressin	AVPR1A	AVPR1A	Calcium
Kinases			,
TK	LCK	LCK	KINOMEscan®
	INSR	INSR	KINOMEscan
	VEGFR2	VEGFR2	KINOMEscan
AGC	ROCK1	ROCK1	KINOMEscan


Family	Gene Symbol	Target	Readout		
Transporters					
Dopamine	SLC6A3	DAT	Neurotransmitter uptake		
Norepinephrine	SLC6A2	NET	Neurotransmitter uptake		
Serotonin	SLC6A4	SERT	Neurotransmitter uptake		
Ion Channels					
GABA Channel	GABRA1	GABAA	Membrane potential		
Serotonin Channel	HTR3A	5-HT ₃	Calcium flux		
Ca ²⁺ Channel	CACNA1C	Ca _v 1.2	Calcium flux		
K+ Channel	KCNH2	hERG	Thallium flux		
	KCNQ1	KvLQT1/ minK	Thallium flux		
Na+ Channel	SCN5A	Na _v 1.5	Membrane potential		
Glutamate Channel	GRIN1/ GRIN2B	NMDAR 1/2B	Calcium flux		
Nicotinic Channel	CHRNA4/ CHRNB2	nAChR (α4/b2)	Calcium flux		
Nuclear Receptors					
Steroid Nuclear Receptors	AR	AR	Nuclear translocation		
	GR	GR	Protein interaction		
Non-Kinase Enzymes					
AA Metabolism	COX1	COX1	Enzymatic activity		
	COX2	COX2	Enzymatic activity		
Monoamine and Neurotransmitter	AChE	AChE	Enzymatic activity		
	MAOA	MAO-A	Enzymatic activity		
Phosphodiesterases	PDE3A	PDE3A	Enzymatic activity		
	PDE4D2	PDE4D2	Enzymatic activity		

¹ Bowes et al., Nature Reviews, 11: 909-922 (2012)

Functional Assays with Human Targets

Optimized Assays Validated with Reference Compounds



Inhibition of Serotonin (5-Hydorxytryptamine) HTR2B signaling by reference compounds.

Inhibition of Cyclooxygenase COX2 by reference compounds.

Data Analysis Made Easy with Comprehensive Reports

- Easy to interpret data summary and E/IC₅₀ curves
- Heatmap highlights potential adverse events
- Enable efficient decision making for lead selection or SAR analysis

台灣總代理

Learn more about SAFETYscan™ In Vitro Pharmacological Profiling Services at discoverx.com/safetyscan